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Abstract—An efficient synthesis and structural aspects of a novel class of selenium bearing hexa-hosts by the reaction of hexafluoro-
benzene or hexakis(bromomethyl) benzene with RSe� ions is demonstrated. However, under identical reaction conditions, our
attempts to prepare tellurium analogues by the reaction of RTe� (R=Ph or p-CH3C6H4-) with hexafluorobenzene or hexa-
kis(bromomethyl)benzene to obtain (RTe)6C6 and (RTeCH2)6C6 proved to be difficult.
� 2004 Elsevier Ltd. All rights reserved.
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R' = R = H 1 ; R' = Me, R =H 2 ; R' = OMe, R = H 3 ;
R' = R = Me 4 ; R' = R = CHMe2 5 ; R' = R = CMe3 6
Currently considerable efforts are being devoted to the
synthesis of hexasubstituted benzene derivatives with
1,3,5- or 2,4,6-substitution pattern, leading to character-
istically preorganized systems and a wide range of inclu-
sion behavior has been established for hexa-host type
molecules.1 Certain structural features present in host
compounds, such as size, shape, and the symmetry of
the host molecule, can maximize opportunities for inclu-
sion complex formation. Furthermore, the modification
of a known host might lead to new hosts with properties
significantly different from those of the parent in terms
of both cavity size and selective inclusion behavior. In
this regard a wide range of hexa-hosts containing either
oxygen2 or sulfur1,3 have been studied in detail for their
multimolecular inclusion behavior. In contrast, compar-
atively little work has appeared concerning the structur-
ally related selenium analogues.4,5 For example, the
investigations on (PhSe)6C6, (PhSeCH2)6C6, and
(ptBuC6H4SeCH2)6C6 are limited to their synthesis and
the structures of the resulting products remain unex-
plored despite the fact that these systems might exhibit
self-organizing properties and may create useful nonhy-
drogen-bonded networks through chalcogen� � �chalco-
gen interactions.
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Our curiosity regarding the structures of these hexa-
hosts was stimulated by our continuing interest in the
search for potential organoselenium or tellurium-con-
taining molecules whereby the chalcogen atoms could
play an important role in the design and synthesis of
highly diverse spatially arranged single components with
a view to creating nonhydrogen-bonded networks. In
the present study a new and different strategy is em-
ployed for the selenium-containing hexa-hosts, the main
objective being the design and synthesis of new hosts
with no direct structural relationship to any other host.
Sodium areneselenolate ions,6 can be generated in situ
by the reduction of the corresponding diaryldiselenide
in aqueous THF with sodium borohydride at 0 �C. A
�problem� we encountered immediately was that NaBH4
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was not very soluble in anhydrous THF. However, the
addition of a few drops of water to the anhydrous
THF apparently facilitated dissolution (giving clear
solutions as observed), and generated the corresponding
ArSe� anion.7 It reacted cleanly with hexabromomethyl-
benzene and, after completion of the reaction, the prod-
uct in solution was recovered by conventional aqueous
workup in excellent yields (>90%) and high purity. In
particular, compound 2 was easily isolated as white crys-
tals after removal of the solvent.8 We also attempted the
synthesis of hexakis(phenylseleno)benzene [(PhSe)6C6] 7
via a modified route. The synthesis of the first example
of hexakis(phenylseleno)benzene has been reported in
the literature; it was prepared by the reaction of PhSeNa
with C6Cl6 in HMPA at ambient temperature for four
days, furnishing a 51% yield of hexakis(phenylse-
leno)benzene.4 This compound can easily be obtained
by the reaction of 1mol of hexafluorobenzene with
6mol of the PhSe� anion generated in situ for a stoichio-
metric and complete reaction.9 However, under identical
conditions, our attempts to prepare tellurium analogues
by the reaction of RTe� (R=Ph or p-CH3C6H4-) with
hexakis(bromomethyl)benzene and hexafluorobenzene
to afford (RTe)6C6 and (RTeCH2)6C6 proved to be dif-
ficult and recovery of R2Te2 from the reaction mixture
was the typical outcome (Scheme 1).

Compounds (1–7) are crystalline in nature and poorly
soluble in common organic solvents when freshly pre-
pared and the solubility further decreased after crystalli-
zation. They can be crystallized from a solution of
benzene or toluene. Physicochemical and spectral stud-
ies are in good agreement with the proposed stoichio-
metry. 1H and 13C NMR spectral data showed no
unusual features, suggesting in all cases, the equivalence
of the RE� groups as well as the ring carbons indicating
symmetrical structures. The electrospray mass spectral
(ES-MS) technique was found to be quite helpful in
establishing structures on the basis of fragmentations.
Although the parent molecular ion peaks were not ob-
served, in each case the loss of one arylseleno group
was always observed from the parent ion and the result-
ing signals were attributable to the consecutive loss of
the arylseleno groups as part of their fragmentation pat-
tern.10 The stepwise fragmentation pattern further con-
firms the symmetrical nature of the product. Single
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Scheme 1. Reagents and conditions: E=Se, n=1, R=Ph 1 (90%); p-

CH3C6H4 2 (92%); MeO–C6H4 3 (95%); 2,4,6-Me3C6H2 4

(92%); 2,4,6-iPrC6H2 5 (91%); 2,4,6-tBuC6H2 6 (93%); E=Se, n=0,

R=Ph 7 (91%).
crystal X-ray diffraction studies of the compound
(PhSeCH2)6C6 1 revealed that the molecule crystallizes
in a monoclinic, C2/c, space group.11 The distribution
of the side-chain phenylseleno units of compound 1
was regular as they were arranged alternatively above
and below the central benzene ring plane (ababab con-
formation, a=above and b=below).

In summary, we have demonstrated that multi-selenium
aromatic compounds can be synthesized easily. The
hexa-host compounds of oxygen and sulfur have been
prepared and encouragingly formed a number of inclu-
sion complexes with solvent molecules and are capable
of binding metal cations in solution as well. However,
we could not find any inclusion phenomenon in our sys-
tems. Due to their sterically congested structures, they
might be regarded as building blocks for larger p-conju-
gated systems aiming at star-shaped molecules with new
properties. We are currently involved in examining
their applications and results will be reported in due
course.
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Compound 1, colorless cubes (0.50·0.10·0.05mm)
is monoclinic, C48H42Se6, space group C2/c, a=
10.7433(11)Å, b= 25.979(3) Å, c=15.3594(16) Å,
a=90.00�, b=102.271(2)�, c=90.00,�, V=4188.79Å.3
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